
AMENABLE GROUPS AND ACTIONS

VINCENT DUMONCEL

In this short handout, we introduce the concept of amenability for actions and, as a
particular case, for groups. We present the first properties of such actions, as well as
examples of amenable and non-amenable groups.

1. Means on a set
To introduce and study amenability, we first need to define and understand means

on a set 𝑋 .
Definition 1.1. A mean on a set 𝑋 is a map 𝜇 : P(𝑋) −→ [0, 1] so that 𝜇(𝑋) = 1 and
𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for all disjoint 𝐴, 𝐵 ∈ P(𝑋).

In other words, a mean on a set 𝑋 is a finitely additive probability measure.
Remark 1.2. As for probability measures, there are several properties inherited from
the definition. We let the reader check that if 𝜇 is as in the Definition 1.1, it satisfies:

(i) 𝜇(∅) = 0.
(ii) 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵), for all 𝐴, 𝐵 ∈ P(𝑋).

(iii) 𝜇

( 𝑛⊔
𝑖=1

𝐴𝑖

)
=

𝑛∑︁
𝑖=1

𝜇(𝐴𝑖) for all 𝐴1, . . . , 𝐴𝑛 ∈ P(𝑋).

(iv) 𝜇(𝐴) ≤ 𝜇(𝐵) for all 𝐴, 𝐵 ∈ P(𝑋) such that 𝐴 ⊂ 𝐵.
Given a set 𝑋 , we will denote by M(𝑋) the set of all means on 𝑋 , and we see it as

a topological subspace of ℝP(𝑋). Moreover we endow ℝP(𝑋) with the product topology,
also called the topology of point-wise convergence. Therefore a sequence (𝜇𝑛)𝑛∈ℕ of
means converges to 𝜇 in ℝP(𝑋) if and only if 𝜇𝑛(𝐴) −→ 𝜇(𝐴) in [0, 1] ⊂ ℝ, for all
𝐴 ∈ P(𝑋).
Example 1.3. Suppose 𝑋 ≠ ∅ and choose 𝑥 ∈ 𝑋 . The Dirac mass at 𝑥 is defined as

𝛿𝑥 (𝐴) ··=
{
1 if 𝑥 ∈ 𝐴

0 if 𝑥 ∉ 𝐴
.

for all 𝐴 ∈ P(𝑋). One easily checks that 𝛿𝑥 ∈ M(𝑋).
For a while, Dirac masses will be our only examples of means on a set. To prove there

exists other means, more difficult to understand, we will establish some linear and
topological properties of M(𝑋). Note for instance that M(𝑋) is not a vector subspace
of ℝP(𝑋), as it does not contain the zero function. It is also not closed under arbitrary
linear combinations because of the condition 𝜇(𝑋) = 1.
Lemma 1.4. The set M(𝑋) is convex.
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Proof. This is a straightforward check. Let 𝜇, 𝜂 ∈ M(𝑋) and 𝜆 ∈ [0, 1]. Since 𝜇(𝑋) =
𝜂(𝑋) = 1, we have (𝜆𝜇 + (1 − 𝜆)𝜂) (𝑋) = 𝜆 + (1 − 𝜆) = 1. Likewise, if 𝐴, 𝐵 ⊂ 𝑋 are
disjoint, then

(𝜆𝜇 + (1 − 𝜆)𝜂) (𝐴 ⊔ 𝐵) = 𝜆𝜇(𝐴 ⊔ 𝐵) + (1 − 𝜆)𝜂(𝐴 ⊔ 𝐵)
= (𝜆𝜇 + (1 − 𝜆)𝜂) (𝐴) + (𝜆𝜇 + (1 − 𝜆)𝜂) (𝐵)

using finite additivity of 𝜇 and 𝜂. This proves the claim. □

From the lemma, the next corollary is immediate.
Corollary 1.5. Any convex combination of means is a mean.

Proof. A convex combination of means is of the form
𝑛∑︁
𝑖=1

𝜆𝑖𝜇𝑖 with
𝑛∑︁
𝑖=1

𝜆𝑖 = 1 and 𝜇𝑖 ∈

M(𝑋) for all 1 ≤ 𝑖 ≤ 𝑛. We conclude using induction on 𝑛 and Lemma 1.4. □

Let us now turn to topological properties. By definition, a basis for the product
topology on ℝP(𝑋) is given by all sets of the form

O1 × · · · × O𝑛 ×
∏

P(𝑋)\{𝐴1,...,𝐴𝑛}
ℝ

where O1, . . . ,O𝑛 are open sets of ℝ and 𝐴1, . . . , 𝐴𝑛 ∈ P(𝑋). A subbasis is therefore
given by {

O ×
∏

P(𝑋)\{𝐴}
ℝ : O ⊂ ℝ open, 𝐴 ∈ P(𝑋)

}
.

The complement of an open set of this form is (ℝ \ O) ×
∏

P(𝑋)\{𝐴}
ℝ. Hence we can

construct closed subsets of ℝP(𝑋) by fixing finitely many 𝐴1, . . . , 𝐴𝑛 ∈ P(𝑋), choosing
any closed subset C ⊂ ℝ{𝐴1,...,𝐴𝑛} ≃ ℝ𝑛, and considering

C ×
∏

P(𝑋)\{𝐴1,...,𝐴𝑛}
ℝ.

This observation makes a lot easier the proof of the following fact.

Proposition 1.6. The space M(𝑋) is compact for the product topology on ℝP(𝑋).

Proof. Firstly, note that in fact M(𝑋) ⊂ [0, 1]P(𝑋) and the latter is compact by Ty-
chonoff’s theorem. It is thus enough to prove that M(𝑋) is closed in [0, 1]P(𝑋). By
expanding the definition, we have

M(𝑋) = {𝜇 ∈ [0, 1]P(𝑋) : 𝜇(𝑋) = 1, 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) ∀𝐴, 𝐵 ∈ P(𝑋)}
= {𝜇 ∈ [0, 1]P(𝑋) : 𝜇(𝑋) = 1}

∩
⋂

𝐴,𝐵∈P(𝑋), 𝐴∩𝐵=∅

{
𝜇 ∈ [0, 1]P(𝑋) : 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)

}
.

All sets in this writing of M(𝑋) are closed by the observation above: the first one
corresponds to the choice 𝐴1 = 𝑋 , 𝐶 = {1}. The second one, for 𝐴 and 𝐵 fixed with
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𝐴∩𝐵 = ∅, corresponds to 𝐴1 = 𝐴, 𝐴2 = 𝐵, 𝐴3 = 𝐴⊔𝐵 and𝐶 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥+𝑦 = 𝑧}.
Therefore M(𝑋) is closed in [0, 1]P(𝑋) as an intersection of closed sets. This concludes
our proof. □

Recall that if (𝑥𝑛)𝑛∈ℕ is a sequence in a topological space 𝑋 , it has an accumulation
point 𝑦 ∈ 𝑋 if for every open set 𝑈 ⊂ 𝑋 with 𝑦 ∈ 𝑈 and for every 𝑁 ∈ ℕ, there exists
𝑛 ≥ 𝑁 so that 𝑥𝑛 ∈ 𝑈. Recall furthermore that if 𝑋 is a compact topological space, then
any sequence has an accumulation point. Indeed, suppose that (𝑥𝑛)𝑛∈ℕ is a sequence
with no accumulation point in 𝑋 . Then for any 𝑦 ∈ 𝑋 there is an open subset 𝑈𝑦 with
𝑦 ∈ 𝑈𝑦 and containing only finitely many terms of the sequence (𝑥𝑛)𝑛∈ℕ. The collection
{𝑈𝑦}𝑦∈𝑌 is then an open covering of 𝑋 , and by compactness there exists 𝑦1, . . . , 𝑦𝑚 ∈ 𝑋
with 𝑋 ⊂ 𝑈𝑦1 ∪ · · · ∪𝑈𝑦𝑚 . This implies that our sequence (𝑥𝑛)𝑛∈ℕ contains only finitely
many terms, a contradiction.

Though we must be careful. In a compact topological space a sequence does not
have necessarily a convergent subsequence. Topological spaces with this property
are called sequentially compact, and are usually not compact. However, sequential
compactness is equivalent to compactness for metric spaces, and more generally for
metrisable spaces.

2. First examples of amenable groups
Now is the time for defining amenable groups and actions.

Definition 2.1. Let 𝐺 be a group and 𝑋 a set. An action 𝐺↷ 𝑋 is called amenable if
there exists 𝜇 ∈ M(𝑋) so that 𝜇(𝑔𝐴) = 𝜇(𝐴) for 𝐴 ∈ P(𝑋) and all 𝑔 ∈ 𝐺.

When such a 𝜇 exists, we call it a left invariant mean.

Definition 2.2. A group 𝐺 is amenable if the left multiplication action of 𝐺 on itself
is amenable.

That is, a group 𝐺 is amenable if there exists 𝜇 ∈ M(𝐺) so that 𝜇(𝑔𝐴) = 𝜇(𝐴) for
all 𝐴 ⊂ 𝐺 and 𝑔 ∈ 𝐺. As an exercise, show that if such a left invariant mean exists,
then 𝐺 also has a right invariant mean.

Here is our central example of an amenable action.

Example 2.3. Let 𝐺 be a group, and 𝑋 ≠ ∅ a finite 𝐺−space. Let 𝜇 ··=
1
|𝑋 |

∑︁
𝑥∈𝑋

𝛿𝑥, and

fix 𝑔 ∈ 𝐺. As 𝛿𝑥 (𝑔𝐴) = 𝛿𝑔−1𝑥 (𝐴) for all 𝐴 ⊂ 𝑋 and 𝑥 ∈ 𝑋 , 𝜇 is a left invariant mean:

𝜇(𝑔𝐴) = 1
|𝑋 |

∑︁
𝑥∈𝑋

𝛿𝑥 (𝑔𝐴) =
1
|𝑋 |

∑︁
𝑥∈𝑋

𝛿𝑔−1𝑥 (𝐴) =
1
|𝑋 |

∑︁
𝑥∈𝑋

𝛿𝑔−1𝑥 (𝐴) = 𝜇(𝐴).

This proves that 𝐺↷ 𝑋 is amenable. Note that no assumption on 𝐺 is required.

Corollary 2.4. Finite groups are amenable.

Proof. If 𝐺 is a finite group, it suffices to apply Example 2.3 with 𝑋 = 𝐺 itself. □

Let 𝑓 : 𝑋 −→ 𝑌 be any map. It induces a map 𝑓∗ : M(𝑋) −→ M(𝑌) defined as
𝑓∗(𝜇) (𝐴) ··= 𝜇( 𝑓 −1(𝐴)) for all 𝜇 ∈ M(𝑋) and 𝐴 ∈ P(𝑌). Hence an action 𝐺 ↷ 𝑋
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automatically induces an action 𝐺 ↷ M(𝑋), and one can restate Definition 2.1 as
follows: 𝐺↷ 𝑋 is amenable if M(𝑋)𝐺 ≠ ∅, where

M(𝑋)𝐺 ··= {𝜇 ∈ M(𝑋) : ∀𝑔 ∈ 𝐺, 𝑔𝜇 = 𝜇}
stands for the set of fixed points of the action 𝐺↷M(𝑋).
Remark 2.5. Let 𝑓 : 𝑋 −→ 𝑌 . For the product topologies on M(𝑋) ⊂ ℝP(𝑋) and
M(𝑌) ⊂ ℝP(𝑌), 𝑓∗ is continuous. Indeed, if O×

∏
P(𝑌)\{𝐴}

ℝ is an element of the subbasis

for the topology on M(𝑌), with O ⊂ ℝ open and 𝐴 ∈ P(𝑌), we have

𝑓 −1
∗

(
O ×

∏
P(𝑌)\{𝐴}

ℝ

)
=

{
𝜇 ∈ M(𝑋) : 𝑓∗(𝜇) ∈ O ×

∏
P(𝑌)\{𝐴}

ℝ

}
= {𝜇 ∈ M(𝑋) : 𝑓∗(𝜇) (𝐴) ∈ O}
= {𝜇 ∈ M(𝑋) : 𝜇( 𝑓 −1(𝐴)) ∈ O}
= O ×

∏
P(𝑋)\{𝑓 −1 (𝐴)}

ℝ

which is open in M(𝑋). This shows that 𝑓∗ is continuous as claimed. Moreover, 𝑓∗
preserves convex combinations, in the sense that 𝑓∗(𝜆𝜇+(1−𝜆)𝜂) = 𝜆𝑓∗(𝜇)+(1−𝜆) 𝑓∗(𝜂)
for all 𝜇, 𝜂 ∈ M(𝑋) and all 𝜆 ∈ [0, 1].

Explicitly, for a finite group 𝐺, 𝜇(𝐴) = |𝐴|
|𝐺 | is a left invariant mean. The next result

gives an example of an amenable group without any explicit formula for an invariant
mean.
Theorem 2.6. The group ℤ is amenable.

Proof. For 𝑛 ≥ 1, consider 𝜇𝑛 ··=
1
𝑛

𝑛∑︁
𝑗=1

𝛿 𝑗. By Corollary 1.5, 𝜇𝑛 ∈ M(ℤ) for every

𝑛 ≥ 1. By Proposition 1.6, M(ℤ) is compact, so (𝜇𝑛)𝑛≥1 has an accumulation point
𝜇 ∈ M(ℤ). We now prove 𝜇 is a left invariant mean for the action ℤ ↷ ℤ, i.e. we
must show that 𝑔𝜇 = 𝜇 for all 𝑔 ∈ ℤ. Writing ℤ = ⟨𝑢⟩ multiplicatively, it is enough to
prove that 𝑢𝜇 = 𝜇. First, note that if 𝐴 ⊂ ℤ, then

𝑢𝛿 𝑗 (𝐴) = 𝛿 𝑗 (𝑢−1𝐴) =
{
1 if 𝑗 ∈ 𝑢−1𝐴

0 if 𝑗 ∉ 𝑢−1𝐴
=

{
1 if 𝑢 𝑗 = 𝑗 + 1 ∈ 𝐴

0 if 𝑢 𝑗 = 𝑗 + 1 ∉ 𝐴
= 𝛿 𝑗+1(𝐴)

so that 𝑢𝛿 𝑗 = 𝛿 𝑗+1. It follows that 𝑢𝜇𝑛 =
1
𝑛

𝑛+1∑︁
𝑗=2

𝛿 𝑗, and thus 𝑢𝜇𝑛 − 𝜇𝑛 = 1
𝑛
(𝛿𝑛+1 − 𝛿1)

for all 𝑛 ≥ 1. This implies that
(2.1) 𝑢𝜇𝑛 − 𝜇𝑛 −→ 0
as 𝑛 → ∞, in ℝP(ℤ). If 𝑢𝜇 ≠ 𝜇, we can separate them by disjoint neighbourhoods 𝑈

and 𝑉 (because ℝP(ℤ) is Hausdorff, as a product of Hausdorff spaces). Since 𝜇 is an
accumulation point of (𝜇𝑛)𝑛∈ℕ and 𝑢𝜇 is an accumulation point of (𝑢𝜇𝑛)𝑛∈ℕ, we can
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find infinitely many terms of the sequence (𝜇𝑛)𝑛∈ℕ in 𝑈 and infinitely many terms of
(𝑢𝜇𝑛)𝑛∈ℕ in 𝑉 . Since they are disjoint, this contradicts (2.1). Thus 𝑢𝜇 = 𝜇, and this
finishes the proof. □

Remark 2.7. The fact that 𝑢𝜇 is an accumulation point of (𝑢𝜇𝑛)𝑛 follows from the
continuity of

𝜑𝑢 : M(ℤ) −→ M(ℤ)
𝜇 ↦−→ 𝑢𝜇

and the continuity of 𝜑𝑢 follows from Remark 2.5.

As recalled above, for general topological spaces compactness is not necessarily equiv-
alent to sequential compactness, and indeed the sequence (𝜇𝑛)𝑛≥1 involved in the above
proof does not have a convergent subsequence, although M(ℤ) is compact. Suppose for
a contradiction that (𝜇𝑛𝑘

)𝑘∈ℕ is such a subsequence, and denote 𝜇 ∈ M(ℤ) its limit.
For 𝑟 ≥ 1, let 𝐴𝑟 ··= {−𝑟, . . . , 𝑟}. Then

𝜇𝑛𝑘
(𝐴𝑟) =

{
1 if 𝑛𝑘 ≤ 𝑟
𝑟
𝑛𝑘

if 𝑛𝑘 > 𝑟

which tends to 0 as 𝑘 → ∞. It implies that 𝜇(𝐴𝑟) = lim
𝑘→∞

𝜇𝑛𝑘
(𝐴𝑟) = 0 for all 𝑟 ≥ 1. This

forces 𝜇(ℤ) = 0, which is absurd. In particular, M(ℤ) is not sequentially compact,
and therefore not metrisable either, nor second countable.

3. Free actions and amenability
We prove here our first stability result about the class of amenable groups: it is

closed when taking subgroups. The next lemma is the first step in that direction.
Recall that a set map 𝑓 : 𝑋 −→ 𝑌 between two𝐺−sets is called a𝐺−map if it commutes
to the action of 𝐺, i.e. if 𝑓 (𝑔𝑥) = 𝑔𝑓 (𝑥) for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 . Note that compositions
and inverses of 𝐺−maps are 𝐺−maps as well.

Lemma 3.1. Let 𝑋,𝑌 be two 𝐺−sets, and 𝑓 : 𝑋 −→ 𝑌 be a 𝐺−map. If 𝐺 ↷ 𝑋 is
amenable, then 𝐺↷ 𝑌 is amenable.

Proof. Recall that 𝑓 : 𝑋 −→ 𝑌 induces 𝑓∗ : M(𝑋) −→ M(𝑌). Since 𝐺 ↷ 𝑋 is
amenable, there exists 𝜇 ∈ M(𝑋)𝐺. We then prove that 𝑓∗(𝜇) ∈ M(𝑌) is a fixed
point for the action 𝐺 ↷M(𝑌). Since 𝑓 is a 𝐺−map, one has 𝑔𝑓∗(𝜇) = 𝑓∗(𝑔𝜇) for all
𝑔 ∈ 𝐺 (check!), and it follows that

𝑔𝑓∗(𝜇) = 𝑓∗(𝑔𝜇) = 𝑓∗(𝜇)
for all 𝑔 ∈ 𝐺 since 𝜇 is 𝐺−invariant. This finishes the proof. □

This result implies that an amenable group always acts amenably.

Corollary 3.2. If 𝐺 is amenable, then any action 𝐺↷ 𝑋 with 𝑋 ≠ ∅ is amenable.

Proof. Since 𝑋 ≠ ∅, choose 𝑥0 ∈ 𝑋 . The map 𝑓 : 𝐺 −→ 𝑋 , 𝑓 (𝑔) ··= 𝑔𝑥0 is a 𝐺−map, and
the action 𝐺↷ 𝐺 is amenable by hypothesis. Lemma 3.1 implies then that 𝐺↷ 𝑋 is
amenable, as claimed. □
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We now wish to determine whether the converse is true, i.e. if a group acts amenably
on a non-empty set, is the group amenable? In fact, it is not hard to see that with no
further assumption, this statement is false. It suffices to consider for instance an
action of a non-amenable group (an example of such a group will be provided in the
next section) on a finite set. Such an action is amenable by the Example 2.3.
Definition 3.3. A group action 𝐺↷ 𝑋 is free if Stab𝐺 (𝑥) = {𝑒} for all 𝑥 ∈ 𝑋 .

With words, a group action is free if it has no fixed points, i.e. 𝑋𝐺 = ∅. It turns out
it is a sufficient condition to ensure amenability of the acting group.
Proposition 3.4. If 𝐺↷ 𝑋 is an amenable free action, then 𝐺 is amenable.
Proof. Let 𝐺 ↷ 𝑋 be an amenable free action, and let 𝑅 ⊂ 𝑋 be a set of representa-
tives of the 𝐺−orbits: we choose exactly one representative per orbit.
We define

𝑓 : 𝐺 × 𝑅 −→ 𝑋

(𝑔, 𝑟) ↦−→ 𝑔𝑟

Since 𝑅 is a set of representatives, and since orbits form a partition of 𝑋 , 𝑓 is surjective.
In fact, it is also injective. If (𝑔, 𝑟), (𝑔′, 𝑟′) ∈ 𝐺 × 𝑅 are such that 𝑔𝑟 = 𝑔′𝑟′ then
(𝑔′)−1𝑔𝑟 = 𝑟′, so 𝑟 and 𝑟′ are in the same orbit, and so 𝑟 = 𝑟′ since we chose one element
in each orbit. But this implies (𝑔′)−1𝑔𝑟 = 𝑟, which means (𝑔′)−1𝑔 ∈ Stab𝐺 (𝑟) = {𝑒}.
Thus 𝑔 = 𝑔′, and 𝑓 is injective. Now we consider 𝐺 × 𝑅 as a 𝐺−set with the left
multiplication action on 𝐺 and the trivial action on 𝑅. For this action on 𝐺 × 𝑅, 𝑓 is a
𝐺−map, since

∀𝛾 ∈ 𝐺, ∀(𝑔, 𝑟) ∈ 𝐺 × 𝑅, 𝑓 (𝛾(𝑔, 𝑟)) = 𝑓 (𝛾𝑔, 𝑟) = (𝛾𝑔)𝑟 = 𝛾(𝑔𝑟) = 𝛾 𝑓 (𝑔, 𝑟).
We have almost all ingredients to apply Lemma 3.1, but 𝑓 goes in the wrong direction.
We then consider its inverse 𝑓 −1 : 𝑋 −→ 𝐺 × 𝑅, which is a 𝐺−map. Likewise, the
projection 𝑝𝐺 : 𝐺×𝑅 −→ 𝐺 is a𝐺−map. Therefore the composition 𝑝𝐺◦𝑓 −1 : 𝑋 −→ 𝐺 is
a 𝐺−map. Since 𝐺↷ 𝑋 is amenable, Lemma 3.1 applies, and 𝐺↷ 𝐺 is an amenable
action, which means exactly that 𝐺 is amenable. □

This result is the key statement to conclude on amenability of subgroups of amenable
groups.
Corollary 3.5. Let 𝐺 be an amenable group. Then any subgroup of 𝐺 is amenable.
In particular if 𝐺 contains a non-amenable subgroup, then 𝐺 is not amenable.
Proof. Suppose 𝐺 is amenable, and let 𝐻 ⩽ 𝐺. Choose 𝜇 ∈ M(𝐺)𝐺. In particu-
lar, 𝜇 ∈ M(𝐺)𝐻 so that the action 𝐻 ↷ 𝐺 by left multiplication is amenable. It is
straightforward to check that this action is free. Thus 𝐻 is amenable by Proposition
3.4. □

4. Free groups are not amenable
In this section we construct the simpliest example of an infinite family of non-amenable

groups.
Let 𝑆 be any set. The free group on 𝑆, denoted 𝐹𝑆, is the unique group satisfying the

following universal property: for any group 𝐺, for any map 𝑓 : 𝑆 −→ 𝐺, there exists a
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unique group homomorphism 𝑓 : 𝐹𝑆 −→ 𝐺 extending 𝑓 . In other words, there exists a
unique group homomorphism 𝑓 making the following diagram commute:

𝑆
𝑓 //

𝜄
��

𝐺

𝐹𝑆

𝑓
>>

Here 𝜄 : 𝑆 ↩→ 𝐹𝑆 is the natural inclusion of 𝑆 in 𝐹𝑆.

Remark 4.1. The free group 𝐹𝑆 depends only on |𝑆|, up to isomorphism. We will write
𝐹𝑑 if |𝑆| = 𝑑.

Note that 𝐹0 is the trivial group, and 𝐹1 is infinite cyclic, so 𝐹1 � ℤ. For 𝑛 ≥ 2, 𝐹𝑛 is
not abelian. Free groups play a central role in group theory, and more details on their
construction and properties can be found in [1, 2]. One particularly important result
about them is the so called Nielsen-Schreier theorem, stating that any subgroup of a
free group is free.

For us free groups provides the other part of the spectrum, opposite to finite groups
and ℤ, as they are not amenable.

Theorem 4.2. The group 𝐹2 is not amenable.

Proof. Suppose for a contradiction that there exists a left invariant mean 𝜇 on 𝐹2.
Write 𝐹2 = {𝑒} ⊔ 𝐴+ ⊔ 𝐴− ⊔ 𝐵+ ⊔ 𝐵−, where 𝐴+ (resp. 𝐴−) consists of reduced words
starting with an 𝑎 (resp. 𝑎−1) and 𝐵+ (resp. 𝐵−) consists of reduced words starting
with a 𝑏 (resp. 𝑏−1). Since the second letter of an element of 𝐴+ can be an 𝑎, a 𝑏 or a
𝑏−1, multiplying this element by 𝑎−1 produces an element either of 𝐴+, 𝐵+ or 𝐵−. Then

𝑎−1𝐴+ = {𝑒} ⊔ 𝐴+ ⊔ 𝐵+ ⊔ 𝐵−.

Properties of 𝜇 then imply

𝜇(𝐴+) = 𝜇(𝑎−1𝐴+) = 𝜇({𝑒} ⊔ 𝐴+ ⊔ 𝐵+ ⊔ 𝐵−) = 𝜇({𝑒}) + 𝜇(𝐴+) + 𝜇(𝐵+) + 𝜇(𝐵−)
and erasing 𝜇(𝐴+) of both sides leaves us with 𝜇({𝑒}) + 𝜇(𝐵+) + 𝜇(𝐵−) = 0. Since
𝜇 takes positive values, this forces 𝜇({𝑒}) = 𝜇(𝐵+) = 𝜇(𝐵−) = 0. Likewise, we get
𝜇(𝐴+) = 𝜇(𝐴−) = 0. We conclude that

1 = 𝜇(𝐹2) = 𝜇({𝑒} ⊔ 𝐴+ ⊔ 𝐴− ⊔ 𝐵+ ⊔ 𝐵−)
= 𝜇({𝑒}) + 𝜇(𝐴+) + 𝜇(𝐴−) + 𝜇(𝐵+) + 𝜇(𝐵−)
= 0

which is absurd. Therefore such a 𝜇 cannot exist. □

Corollary 4.3. For any 𝑑 ≥ 2, 𝐹𝑑 is not amenable.

Proof. As 𝐹𝑑 contains 𝐹2 for any 𝑑 ≥ 2, and the latter is not amenable, Corollary 3.5
gives the conclusion. □

Remark 4.4. The converse of Corollary 3.5 is not true: consider for instance the non-
amenable group 𝐺 = 𝐹2 = ⟨𝑎, 𝑏|∅⟩ with the amenable subgroup 𝐻 = ⟨𝑎⟩ � ℤ.
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It is then a first sufficient criterion to establish the non-amenability of some discrete
groups: prove that the group in question contains a subgroup isomorphic to 𝐹2. The
main standard result to achieve this is the following, usually known as the Ping-Pong
Lemma.
Lemma 4.5. Let 𝐺 be a group acting on a non-empty set 𝑋 . Let Γ1, Γ2 ⩽ 𝐺 be subgroups
of 𝐺 such that |Γ1 | ≥ 3, |Γ2 | ≥ 2. Suppose there exists disjoint non-empty subsets 𝑋1,
𝑋2 ⊂ 𝑋 such that

∀𝛾 ∈ Γ1 \ {𝑒}, 𝛾 · 𝑋2 ⊂ 𝑋1 and ∀𝛾 ∈ Γ2 \ {𝑒}, 𝛾 · 𝑋1 ⊂ 𝑋2.

Then the subgroup Γ ··= ⟨Γ1,Γ2⟩ is free in 𝐺.
Proof. We just need to check every reduced word 𝑤 = 𝛾1 . . .𝛾𝑛 ∈ Γ is not the trivial
word. For this we distinguish several cases.

(i) The length 𝑛 of 𝑤 is odd and 𝛾1, 𝛾𝑛 ∈ Γ1. Since 𝑋2 ≠ ∅, we pick 𝑥 ∈ 𝑋2. By
hypothesis, 𝛾𝑛 · 𝑥 ∈ 𝑋1, so 𝛾𝑛−1 · 𝛾𝑛 · 𝑥 ∈ 𝑋2 (note that 𝛾𝑛−1 indeed lie in Γ2, otherwise
our initial word 𝑤 was not reduced). Continuing this process, we finally arrive at
𝛾2 . . .𝛾𝑛𝑥 ∈ 𝑋2 since 𝑛 − 1 is even. Hence, by applying our hypothesis once more, we
get 𝑤 · 𝑥 = 𝛾1(𝛾2 . . .𝛾𝑛𝑥) ∈ 𝑋1. As 𝑋1 and 𝑋2 are disjoint we then have 𝑤𝑥 ≠ 𝑥, so 𝑤
cannot be the trivial word.

(ii) The length 𝑛 of 𝑤 is odd and 𝛾1 ∈ Γ2, 𝛾𝑛 ∈ Γ2. Here we can choose 𝛾 ∈ Γ1 and
consider the word 𝛾𝑤𝛾−1. It has odd length and first and last letter in Γ1. By (i), we
then know 𝛾𝑤𝛾−1 ≠ 𝑒, which implies 𝑤 ≠ 𝑒.

(iii) The length 𝑛 of 𝑤 is even and 𝛾1 ∈ Γ1, 𝛾𝑛 ∈ Γ2. We pick 𝛾 ∈ Γ1 and we
consider 𝛾𝑤𝛾−1. By reduction its first letter is then 𝛾𝛾1 ∈ Γ1, while its last letter is
just 𝛾−1 ∈ Γ1. Thus 𝛾𝑤𝛾−1 has odd length, and first and last letter in Γ1. We may
apply (i) to get 𝛾𝑤𝛾−1 ≠ 𝑒, so 𝑤 ≠ 𝑒.

(iv) The length 𝑛 of 𝑤 is even and 𝛾1 ∈ Γ2, 𝛾𝑛 ∈ Γ1. As before we choose an arbitrary
𝛾 ∈ Γ1 and we look at 𝛾𝑤𝛾−1. It has odd length after reduction, and its first and last
letter lie in Γ1. Hence 𝑤 ≠ 𝑒. This concludes the fourth case, and also our proof. □

Example 4.6. Consider the action of SL2(ℤ) on the plane ℝ2, and the two matrices

𝐴 ··=
(
1 2
0 1

)
, 𝐵 ··=

(
1 0
2 1

)
.

Observe that by setting

𝑋1 ··=
{ (

𝑥
𝑦

)
∈ ℝ2 : |𝑥| > |𝑦|

}
, 𝑋2 ··=

{ (
𝑥
𝑦

)
∈ ℝ2 : |𝑥| < |𝑦|

}
we obtain 𝐴𝑋2 ⊂ 𝑋1 and 𝐵𝑋1 ⊂ 𝑋2. Indeed if we take 𝑥, 𝑦 ∈ ℝ with |𝑥| < |𝑦| and we
let 𝐴 act on the vector formed by 𝑥 and 𝑦 the result is a vector whose components are
𝑥 + 2𝑦 and 𝑦. Using the second triangle inequality we see that

|𝑥 + 2𝑦| ≥ | |2𝑦| − |𝑥| | ≥ |2𝑦| − |𝑥| > 2|𝑦| − |𝑦| = |𝑦|
meaning the vector we got falls in 𝑋1. The arguing is the same for 𝐵𝑋1 ⊂ 𝑋2. Of course
𝑋1 and 𝑋2 are non-empty and disjoint, so we may apply Lemma 4.5 with Γ1 ··= ⟨𝐴⟩
and Γ2 ··= ⟨𝐵⟩. Both are infinite because 𝐴 and 𝐵 have infinite order. Hence ⟨𝐴, 𝐵⟩
is a free group in SL2(ℤ), namely a non-abelian free group on two generators 𝐹2. It
follows that SL2(ℤ) is not amenable.
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